Piezoelectric Force Sensors, Ring Force Transducers Measurement
9001C_002-928e-12.20Page 34 Page 359001C_002-928e-12.20
5.2 Range selection and threshold
A distinction must be made between the measuring range
oftheloadwasherandthatofthechargeamplier.When
thecorrectpre-loadhasbeenapplied(chapter4.1.1,Fig.
3), the measuring range of the sensor can be chosen
freely, even down to 1% of the nominal force or less, with
roughly the same linearity. Of course, a calibration of the
corresponding range is recommended - on site or at Kist-
ler.
The measuring range desired for performing a measure-
ment can be selected freely on the charge amplier (for
example Kistler Type 5015A…). Charge amplier Type
5015A… provides continuous measuring setting ranges.
Together with load washers the following forces ranges in
Nresults:1…50,000N/Vor10Nto500kNfor10Vout-
put voltage. Of course the maximum admissible force for
the load washer in use must not be exceeded. For ranges
above50kNthereisthechargedivider10:1(forexamp-
leKistlerType5361).
It is for example possible to select a measuring range of
10Nandmeasuresmallforceuctuationssuperimposed
onastatic pretensionof,say,10kN.Briey overloading
small measuring ranges by a factor of 50 does not nor-
mallyharmthechargeamplier.Withbiggeroverloadsit
depends on the capacitance of the input cable whether
theamplierisdamagedornot.
Theinstructionmanualfortheparticularchargeamplier
used will provide information regarding is overload capa-
city.
For practical purposes at least, the threshold of a load
wash-ermayberegardedasinnitelylow.Togetherwith
a stand-ard charge amplier the practical limit is around
0,01N(signal-to-noiseratioabout50%).
5.3 Measuring high-frequency phenomena
Thanks to their high rigidity, quartz piezoelectric force
sensors are eminently suited for measuring rapidly chan-
ging processes. As the mounting situation has a decisi-
veeffect,thenaturalfrequenciesspeciedinthetableof
technical data are more of theoretical importance.
If a load washer is installed into a cylinder of the same
diameter for measuring axial force, it can be said without
contradiction that the dynamic properties of the measu-
ring object are not affected by installing the load washer.
There is no need whatever to take the natural frequency
of the load washer into consideration.
If on the other hand a large mass has to be supported
on three or four load washers, this assembly constitutes a
spring-mass oscillator. Obviously the natural frequency of
this system depends on the rigidity and not on the natural
frequency of the load washers and the magnitude of the
mounted mass. The natural frequency becomes higher as
theloadwashersusedbecomelarger(thatismorerigid).
The fact that the natural frequency of a larger load washer
is itself smaller is not important as far as the natural fre-
quency of the system is concerned. Thus dynamometers
with natural frequencies of several kHz can readily be ma-
nufactured.
Force links assembled from load washers Type 93x1C,
have natural frequencies from 22 to 85 kHz, depending on
size and weight.
5.4 Measuring quasistatic phenomena
Purely static measurements over any length of time are
not possible with the piezoelectric measuring principle.
The time interval during which so-called quasistatic meas-
urements can be performed depends on the insulation re-
sistance of the sensor and connecting cable on the pro-
pertiesofthechargeamplieremployed.
Withaninsulationresistanceof>1013 Wand<0.04 pC/s
amplier drift current, a time-dependent error of about
±0,5 N/min results using a load washer. Assuming a
measuring range of 5 000 N, this value implies an error of
0,1%(5N)ifthemeasurementlasts10minutes.
If the temperature of the transducer changes during the
measurement, a similar error signal must be expected;
this is often called the „temperature drift“. It is caused by
mechanical stresses acting on the quartz washers as a