MULTIPLEX Easyglider Building Instructions

Categoria
Giocattoli telecomandati
Tipo
Building Instructions
1
GB
D
E
I
Bauanleitung 03 ... 10
Building instructions 11 ... 19
Notice de construction 20 ... 35
Istruzioni di montaggio 36 ... 43
Instrucciones de montaje 44 ... 51
© Copyright by MULTIPLEX 2005 Version 1.0
KIT EasyGlider # 21 4205
KIT EasyGlider Electric # 21 4207
F
2
D
F
GB
I
E
Sicherheitshinweise
- Prüfen Sie vor jedem Start den festen Sitz des Motors und der Luftschraube - insbesondere nach dem Transport, härteren Landungen
sowie Abstürzen. Prüfen Sie ebenfalls vor jedem Start den festen Sitz und die richtige Position der Tragflächen auf dem Rumpf.
- Akku erst einstecken, wenn Ihr Sender eingeschaltet ist und Sie sicher sind, daß das Bedienelement für die Motorsteuerung auf
"AUS" steht.
- Im startbereiten Zustand nicht in den Bereich der Luftschraube greifen.
Vorsicht in der Luftschraubendrehebene - auch Zuschauer zur Seite bitten!
- Zwischen den Flügen die Motortemperatur durch vorsichtige Fingerprobe prüfen und
vor einem Neustart den Motor ausreichend abkühlen lassen. Die Temperatur ist richtig, wenn Sie den Motor problemlos berühren
können. Insbesondere bei hohen Außentemperaturen kann dieses bis zu 15 Minuten dauern.
- Denken Sie immer daran: Niemals auf Personen und Tiere zufliegen.
Conseils de sécurité
- Avant chaque décollage, vérifiez la fixation du moteur et de l'hélice, notamment après le transport, après les atterrissages violents
et après un “Crash”. Vérifiez également, avant chaque décollage la fixation ainsi que le positionnement de l’aile par rapport au
fuselage.
- Ne branchez l’accu de propulsion que si vous êtes sûr que votre émetteur est allumé et que l’élément de commande moteur est en
position “ARRET”.
- Ne mettez pas vos doigts dans l’hélice! Attention à la mise en marche, demandez également aux spectateurs de reculer.
- Entre deux vols, vérifiez en posant un doigt dessus, la température du moteur, laissezle refroidir suffisamment avant le prochain
décollage. La température est correcte si vous pouvez maintenir votre doigt ou votre main sur le moteur. Le temps de refroidissement
peut varier jusqu’à 15 minutes s’il fait particulièrement chaud.
- Pensez-y toujours: ne volez jamais vers ou au-dessus des personnes ou des animaux.
Safety notes
- Before every flight check that the motor and propeller are in place and secure - especially after transporting the model, and after
hard landings and crashes. Check also that the wing is correctly located and firmly secured on the fuselage before each flight.
- Don’t plug in the battery until you have switched on the transmitter, and you are sure that the motor control on the transmitter is set
to “OFF”.
- When the model is switched on, ready to fly, take care not to touch the propeller. Keep well clear of the propeller disc too, and ask
spectators to stay back.
- Allow the motor to cool down after each flight. You can check this by carefully touching the motor case with your finger. The
temperature is correct when you can hold your finger on the case without any problem. On hot days this may take up to 15 minutes.
- Please keep in mind at all times: don’t fly towards people or animals.
Note di sicurezza
- Prima di ogni decollo controllare che il motore e la eliche siano fissati stabilmente - specialmente dopo il trasporto, atterraggi duri
e se il modello è precipitato. Controllare prima del decollo anche il fissaggio e la posizione corretta delle ali sulla fusoliera.
- Collegare la batteria solo quando la radio è inserita ed il comando del motore è sicuramente in posizione ”SPENTO”.
- Prima del decollo non avvicinarsi al campo di rotazione della eliche. Attenzione alla eliche in movimento - pregare che eventuali
spettatori si portino alla dovuta distanza di sicurezza!
- Tra un volo e l’altro controllare cautamente con le dita la temperatura del motore e farli raffreddare sufficientemente prima di ogni
nuovo decollo. La temperatura è giusta se si possono toccare senza problemi. Specialmente con una temperatura esterna alta
questo può durare fino a 15 minuti.
- Fare attenzione: Non volare mai nella direzione di persone ed animali.
Advertencias de seguridad
- Compruebe antes de cada despegue que el motor y la hélice estén fuertemente sujetados, sobretodo después de haberlo transportado,
de aterrizajes más fuertes así como después de una caída. Compruebe igualmente antes de cada despegue que las alas estén bien
sujetas y bien colocadas en el fuselaje.
- Conectar la batería, cuando la emisora esté encendida y Usted esté seguro que el elemento de mando para el motor esté en ”OFF”.
- No meter la mano en la zona inmediata a la hélice cuando el avión esté a punto de despegar. ¡Cuidado con la zona de la hélice!
¡Pedir a los espectadores que se aparten!
- Entre los vuelos hay que comprobar cuidadosamente la temperatura del motor con el dedo y dejar que el motor se enfríe antes de
volver a despegar. La temperatura es correcta, si puede tocar el motor sin problemas. Sobretodo en el caso de temperaturas del
ambiente muy altas, esto puede tardar unos 15 minutos.
- Recuerde: No volar nunca hacía personas o animales.
11
EasyGlider KIT # 21 4205
EasyGlider Electric KIT # 21 4207
Examine your kit carefully!
MULTIPLEX model kits are subject to constant quality checks throughout the production process, and we sincerely hope that you
are completely satisfied with the contents of your kit. However, we would ask you to check all the parts before you start
construction, as we cannot exchange components which you have already worked on. If you find any part is not acceptable for
any reason, we will readily correct or exchange it. Just send the component to our Model Department. Please be sure to include
the purchase receipt and a brief description of the fault.
We are constantly working on improving our models, and for this reason we must reserve the right to change the kit contents in
terms of shape or dimensions of parts, technology, materials and fittings, without prior notification. Please understand that we
cannot entertain claims against us if the kit contents do not agree in every respect with the instructions and the illustrations.
Caution!
Radio-controlled models, and especially model aircraft, are by no means playthings. Building and operating them safely
requires a certain level of technical competence and manual skill, together with discipline and a responsible attitude at the
flying field. Errors and carelessness in building and flying the model can result in serious personal injury and damage to
property. Since we, as manufacturers, have no control over the construction, maintenance and operation of our products,
we are obliged to take this opportunity to point out these hazards and to emphasise your personal responsibility.
Additional items required for the EasyGlider / EasyGlider Electric:
Adhesives: cyano-acrylate (“cyano”) and activator
Use medium-viscosity cyano glue (
not styrofoam cyano) in conjunction with activator (“cyano kicker”). Epoxy adhesives produce
what initially appears to be a sound joint, but the bond is only superficial, and the hard resin breaks away from the parts under
load.
Hot-melt glue (from a glue gun) can be used as an alternative.
MULTIPLEX radio control system components for the EasyGlider and EasyGlider Electric:
PiCO 5/6 UNI receiver 35 MHz, e.g. A-band Order No. 5 5920
alternatively 40 MHz Order No. 5 5921
or
Micro IPD UNI receiver 35 MHz, e.g. A-band Order No. 5 5971
alternatively 40 MHz Order No. 5 5972
Tiny-S UNI servo (2 required) Elevator / rudder Order No. 6 5121
Nano-S UNI servo (2 required) 2 x ailerons Order No. 6 5120
600 mm UNI extension lead Aileron servos, 2 x Order No. 8 5032
if necessary: 200 mm UNI separation filter cable Aileron servos, 2 x Order No. 8 5035
Battery charger:
MULTIcharger 5008 DC (charge current 100 mA … 5A) 1 - 8 cells NiCd / NiMH Order No. 9 2525
for use with 12 V power supply, e.g. car battery
Additional items for EasyGlider Electric
only
MULTIcont X-16 UNI Speed controller Order No. 7 2271
MULTIPLEX Permabatt NiMH flight battery 7 / 1500 mAh Order No. 15 6030
or MULTIPLEX Permabatt NiMH flight battery 8 / 1500 mAh Order No. 15 6037
Plug / socket for speed controller / flight battery 6-pin green Order No. 8 5213
Additional items for EasyGlider only
NiMH receiver battery 4 / 1500 mAh Order No. 15 6029
Mini switch harness with charge socket Order No. 8 5037
Rubber bungee launch system for EasyGlider 15 m special rubber cord Order No. 72 3388
100 m towline on reel
Tools:
Scissors, balsa knife, side-cutters, soldering iron.
Note: remove the picture pages from the centre of the building instructions.
Specification EasyGlider EasyGlider Electric
Wingspan 1800 mm 1800 mm
Overall length 1130 mm 1115 mm
Fuselage length 1060 mm 1020 mm
All-up weight approx. 710 g with standard power system approx. 880 g
Wing area FAI approx. 41.6 dm² FAI approx. 41.6 dm²
Wing loading approx. 17 g / dm² approx. 21 g / dm²
RC functions Elevator, rudder, ailerons Plus throttle
GB
12
Important note
This model is not made of styrofoam™, and it is not possible
to glue the material using white glue or epoxy. Please be sure
to use cyano-acrylate glue exclusively, preferably in
conjunction with cyano activator (“kicker”). We recommend
medium-viscosity cyano. This is the procedure: spray cyano
activator on one face of the Elapor®; allow it to air-dry for two
minutes, then apply cyano adhesive to the other face. Join the
parts, immediately position them accurately, and wait a few
seconds for the glue to harden.
Please take care when handling cyano-acrylate adhesives.
These materials harden in seconds, so don’t get them on your
fingers or other parts of the body. We strongly recommend
the use of goggles to protect your eyes. Keep the adhesive
out of the reach of children.
1. Before assembling the model:
Please check the contents of your kit.
You will find Figs. 1 + 2 and the Parts List helpful here.
Please note that some parts supplied in the glider kit differ from
those in the electric version.
Completing the fuselage and tail section
2. Preparing the control “snakes”
Check the length of the elevator snake sleeves 43 and 45,
and shorten them if necessary.
43 3 / 2 Ø x 810 mm
45 2 / 1 Ø x 850 mm
Steel rod insert: 41 0.8 Ø x 890 mm
Repeat the procedure with the rudder snake sleeves 44 and 46.
44 3 / 2 Ø x 785 mm
46 2 / 1 Ø x 810 mm
Steel rod insert: 42 0.8 Ø x 850 mm
3. Installing the snakes in the fuselage shells
Caution: the snake “outers” (outer sleeves) 43 and 44, and the
aerial sleeve 47, should be glued to the fuselage over the full
length of the tubes, as the joints stiffen the tail boom considerably.
Ensure that the control snakes operate smoothly and freely, and
take particular care to avoid glue getting inside the sleeves.
Left-hand fuselage shell:
Fit the elevator snake (length of steel rod = 890 mm) in the left-
hand fuselage shell, pre-formed end first.
Fig. 3
Position the snake outer sleeve 43 flush at the front of the
fuselage shell, as shown in Fig. 4. Lay the fuselage shell down
flat and glue the outer 43 in place, applying cyano to the whole
length of the channel.
Fig. 5
Right-hand fuselage shell:
Fit the rudder snake (length of steel rod = 850 mm) in the right-
hand fuselage shell, pre-formed end first.
Fig. 6
Position the snake outer 44 flush at the front of the fuselage
shell, as shown in Fig. 7. Lay the fuselage shell down flat (watch
out for the locating lugs - lay the shell down flat on the bench with
the corner projecting) and glue the outer sleeve 44 in place,
applying cyano to the full length of the channel.
Fig. 8
4. Installing the aerial sleeve
Glue the aerial sleeve 47 in the right-hand fuselage shell, taking
care to avoid bending the fuselage. Fig. 9
5. Installing the towhook (glider version only)
If you are building the glider version, the towhook 32 should now
be glued in the integral recess in the fuselage shell 4.
Fig. 9
Locate the motor retainer 13.1 which is supplied attached to the
rudder 13, and separate the parts using a sharp balsa knife; cut
along the lines shown dotted in the drawing.
Fig. 10
6. Installing the servos in the fuselage shells
Set the servos to “neutral” from the transmitter, and fit the output
arms on the servos at 90° to the long sides of the case.
Slide the servos into the left and right-hand fuselage shells from
the side, as shown. If you are using different servos it may be
necessary to trim the servo recesses slightly to obtain a close fit.
Run the servo leads from the bottom to the top of the recess, and
secure them with a drop of hot-melt glue. Fix the servos in place
in the same way, applying a drop of hot-melt glue to the mounting
lugs.
Figs. 12 + 13
7. Joining the fuselage shells
High-viscosity (thick) cyano is recommended for this; it must be
used with activator.
Caution: in the electric version the tail ballast weight 33 must be
glued in place as shown in Fig. 11E, and the motor retainer 13.1
inserted as shown, before the shells are joined permanently.
Now install the geared motor unit 14. We recommend that you
solder the speed controller leads to the motor terminals before
you install the motor.
Fig. 11E
Note: The motor / gearbox unit can be removed from the fuselage
at any time if you wish. All you have to do is remove the spinner
and propeller driver, but the motor can only be removed if you
don’t glue it to the fuselage. To remove the power unit, press
down on the motor retainer 13.1, then pull the motor out to the
rear.
Offer up the fuselage shells 3 / 5 and 4 / 6 + 13.1 “dry”, i.e. without
glue, to check that they fit together accurately. Carry out any minor
adjustments required.
Spray activator on the mating surfaces of the fuselage shell 4 / 6
and allow it to air-dry for two minutes.
Apply cyano to the joint areas of the fuselage shell 3 / 5, then
place the shells together carefully and immediately check that
they are aligned correctly. The fuselage centreline seam must
be straight - not curved!
Fig. 14
8. Installing the canopy latch
Install the Canopy-Lock latch catches 22 in the fuselage so that
the latch tongues 23 can be fitted between the catch 22 and the
fuselage side. Spray activator in the recesses in the fuselage
and allow it to air-dry. Apply cyano to the joint surfaces of the latch
catches and push them into place immediately. Apply more glue
to reinforce the joints if necessary.
Fig. 15
9. Installing the rudder hinge
Glue the hinge 31 in the tail end of the fuselage using a little
cyano. Ensure that no glue gets into the hinge pivot.
Fig. 16
Use a balsa knife to cut a slot in the leading edge of the rudder
to accept the rudder hinge 31. Take care here, as you could
easily cut yourself. Cut the slot in the rudder about 3 to 4 mm
deeper (lower) than necessary, as this will make it easier to fit
the rudder and elevator to the fuselage later.
Fig. 17
13
10. Attaching the horn to the rudder
Cut down the T-piece of the horn 24 for the rudder 13 to a depth
of about 2 mm, using side-cutters. Fit the pushrod connector 25
in the second hole from the inside of the rudder horn 24 and
secure it with the washer 26 and nut 27. Caution: note the
orientation of the connector! Carefully tighten the nut just to the
point where the pushrod connector does not wobble, but still
rotates smoothly. When you are satisfied, apply a tiny drop of
cyano to the nut (on the point of a pin) to prevent it coming loose.
Fit the socket-head grubscrew 28 in the pushrod connector 25
using the allen key 29.
Apply activator to the recess in the rudder, then glue the horn 24
in place, with the row of holes facing the hinge pivot axis.
Fig. 18
11. Releasing the elevator and rudder
Release the elevator from the tailplane 12 by cutting at both
ends (1 mm slots). Move the rudder and elevator to and fro
repeatedly to free up the hinge areas - take care not to separate
the control surfaces!
Fig. 19
12. Attaching the horn to the elevator
Fit the pushrod connector 25 in the outermost hole in the elevator
horn 24 and secure it with the washer 26 and nut 27. Caution:
Note the correct orientation! Tighten the nut gently, then secure it
as before with a tiny drop of cyano applied on a pin. Fit the socket-
head grubscrew 28 in the pushrod connector 25 using the allen
key 29.
Apply activator to the recess in the elevator, then glue the horn 24
in place, with the row of holes facing the hinge pivot axis.
Fig. 20
13. Gluing the tailplane and fin together
Glue the fin 13 to the tailplane 12, taking care to set them exactly
at 90° to each other. Use a setsquare or similar tool to check
this.
Fig. 21
14. Gluing the tail assembly to the fuselage
Offer up the tailplane / fin assembly to the fuselage, and check
that the parts fit together snugly. First push the hinge 31 into the
rudder 13, then move the tail assembly forward into final position.
Check in particular that the tailplane 12 fits on the fuselage without
any gaps, and lies parallel to the wing saddle (at the front of the
fuselage). You can check this easily by placing the wing joiner
40 across the wing saddle and securing it temporarily with paper
masking tape. Now sight along the fuselage from the nose and
check that the wing joiner is parallel to the tailplane. If the parts
can easily be aligned correctly, it is safe to glue the tailplane to
the fuselage. Check once more that everything is aligned properly,
and that there are no gaps, before allowing the adhesive to cure.
If you neglect this and glue the tail in place at the wrong angle,
you will regret it for the whole life of the model.
Fig. 21
15. Securing the elevator and rudder pushrods
Slip the plain end of the steel pushrods 42 and 43 through the
pushrod connectors 25 attached to the elevator and rudder horns.
Set the servos and control surfaces to neutral (centre) , then
tighten the socket-head grubscrews 28 to secure the pushrods.
Figs. 22 + 23
Completing the wings
16. Releasing the ailerons
Release the ailerons from the wing panels 8 and 9 by cutting
them free at both ends (1 mm gap). Move the ailerons to and fro
repeatedly to free up the hinge areas - take care not to separate
the control surfaces!
Fig. 24
17. Attaching the horns to the ailerons
Fit the pushrod connectors 25 in the outermost holes in the
aileron horns 24, and secure them with the washers 26 and
nuts 27. Caution: be sure to produce a handed pair (one left, one
right)! Tighten the nuts gently, then secure them as before with a
tiny drop of cyano applied on a pin. Fit the socket-head
grubscrews 28 in the pushrod connectors 25 using the allen key
29.
Apply activator to the recess in the ailerons, then glue the horns
24 in place, with the row of holes facing the hinge pivot axis.
Fig. 25
18. Installing the aileron servos
Set the servos to centre (neutral) from the transmitter. Fit the
output arms on the servos with the levers at 90° to the case
sides; note that the output arms must project beyond the case
sides. Remember once again that the servos must be “handed”,
i.e. a mirror-image pair.
Check that the servos are a snug fit in the recesses in the wing
panels 8 and 9. You may have to make minor adjustments to
suit the type of servo you are using. Apply a drop of hot-melt glue
in the servo lug slots in the wing, then push the servo immediately
into the recess. Apply a drop more glue if necessary.
Fig. 25
19. Fitting the aileron pushrods
Connect the pre-formed end of the steel pushrods 30 to the
outermost hole of the servo output arms, and slip the plain ends
through the pushrod connectors 25. Set the ailerons and servos
to neutral (centre) and tighten the grubscrews 28 to secure them.
20. Deploying the aileron servo leads
Deploy the servo lead in a curve running towards the wing joiner
channel, and extend it at that point using a 600 mm extension
lead. The cables can either be soldered together permanently,
or the standard connectors can be used. A recess is provided in
the wing joiner covers 10 and 11 to accept the extension lead
connectors. Now deploy the cable in a straight line along the
front edge of the joiner channel, keeping the cable upright (on
edge). The cable must project at the wing root by about 250 mm,
so that it can be drawn into the fuselage and plugged into the
receiver when the model is assembled.
Fig. 26
21. Gluing the wing joiner covers in the wings
Carefully check that the wing joiner covers 10 and 11 are an
accurate fit in the wing panels 8 and 9. Where the cover coincides
with the servo extension lead connector, check that there is
sufficient clearance, and cut the cover away slightly if necessary.
When you are confident that the joiner covers can be installed
flush with the wing surface, they can be glued in place using
cyano. Take particular care to avoid glue getting onto the surfaces
which make contact with the wing joiner 40 when the joiner is
fitted. Don’t check the wing joiner 40 for fit until you are certain
that there is no more active adhesive inside the joiner channel.
If you are not sure, spray activator inside and wait for about five
minutes. If you neglect to do this, you may find that the wings
can
never be separated again.
Fig. 27
22. Checking the wing joiner
Assemble the model with the help of the wing joiner 40. Draw
the aileron cables through the opening in the fuselage and
forward (this is easy using a home-made puller made of steel
rod with a hook at one end). Check that the wing panels 8 and 9
fit correctly (without gaps) in and against the fuselage, and carry
out any minor trimming required.
Note: the wings must not be glued to the fuselage. This permits
the model to be dismantled at any time for ease of transport.
Fig. 28
14
23. Gluing the canopy latch tongues to the canopy
The two latch tongues 23 can now be fitted in the canopy 7 - note
that the two projecting lugs should both face inwards! Apply thick
cyano to the notched areas - this time without activator! - then
insert the latch tongues in the slots in the canopy. Immediately fit
the canopy on the fuselage and engage the latch tongues in the
latch catches 22. Carefully align the canopy with the fuselage -
before the glue sets! Wait for about a minute, then carefully ease
the canopy open again. Apply activator to the joint areas of the
latch tongues to help the cyano to cure. If you are making the
glider variant, use a balsa knife to cut back the front canopy
retainer lug as required to clear the receiver battery you are using.
Figs. 29 + 30
Radio installation - both versions
The rest of the receiving system components can now be
installed in the cabin area. Do bear in mind the stated Centre of
Gravity (CG) when positioning the receiver and battery. You can
adjust the model’s balance point if required by re-positioning
the batteries.
Hook-and-loop tape 20 + 21 is supplied in the kit for securing
these components. Note that the adhesive on the tape does not
adhere very strongly, so be sure to fix the tape in the fuselage
using cyano.
In both versions the receiver should be installed aft of the servos,
and secured using hook-and-loop tape. Draw the receiver aerial
through the plastic sleeve 47 (already installed). The easiest
method of doing this is to prepare a length of thin steel wire with
a pointed tip, and slip it through the aerial sleeve 32 from the tail
end. Push the tip inside the insulation of the aerial wire, apply a
tiny drop of cyano to join the two together temporarily, then draw
the aerial through the sleeve by pulling on the wire from the tail
end.
Figs. 31 + 32
Installing the receiving system in the electric-powered version
The motor supplied in the kit features internal suppressors, and
these are adequate if you are using a MULTIcont X-16 speed
controller, # 7 2271.
If you prefer to use a different controller, it is in your own interests
to fit additional suppression measures to the electric motor. A
suitable suppressor set is available under # 8 5020. Solder one
47 nF capacitor between one motor terminal and the motor can,
and a second one between the other terminal and the can. The
third 47 nF capacitor should be soldered across the terminals to
form a bridge.
Solder the speed controller cables to the motor’s terminals as
follows:
Controller positive (+) wire to motor negative (-) terminal
Controller negative (-) wire to motor positive (+) terminal
The single-stage gearbox reverses the direction of rotation of
the motor, making it necessary to connect the motor “the wrong
way round”, as described above. Hold the soldering iron on the
terminals briefly and apply solder at the same time - it is a good
idea to remove the motor from the model before you do this to
avoid heat damage to the plastic parts.
The speed controller should be attached to the fuselage side aft
of the motor. Solder a matching battery connector to the flight
battery cables, and insulate each soldered joint individually with
a piece of heat-shrink tubing.
The flight battery fits under the wing in the compartment aft of the
receiver. As the battery is a tight fit in the compartment, there is
no need to secure it separately. Connect all the components of
the radio control system for testing, referring to the instructions
supplied with the radio control system.
Attach the propeller blades 14 to the hub using one spacer sleeve
and one screw each. Tighten the screws fully, but do not over-
tighten them (take great care not to strip the threads - it is very
easily done).
Fig. 31
Don’t connect the battery to the speed controller until you
have switched your transmitter on and checked that the throttle
control is set to “OFF”.
Switch on the transmitter, connect the flight battery to the controller
in the model, and the controller to the receiver. Your controller
must feature what is known as a BEC circuit (receiver power
supply from the flight battery).
Now switch on the motor briefly from the transmitter, and check
the direction of rotation of the propeller (hold the model firmly
and remove all loose, lightweight items from the area behind
the model before you do this).
Caution: even with small motors and propellers the electric
power system is capable of inflicting serious injury!
Installing the receiving system in the glider version
In addition to the receiver the glider version needs to be fitted
with a switch harness and receiver battery. The receiver switch
fits in a well in the right-hand fuselage shell forward of the servos.
Glue hook-and-loop tape to the receiver battery and the fuselage
bottom, and press the battery into place.
Connect all the components of the radio control system for
testing, referring to the instructions supplied with the radio control
system.
Check that the canopy 7 fits over the receiver battery, and use a
balsa knife to trim back the front retainer lug if necessary. Fit the
canopy on the fuselage.
Fig. 32
Setting the control surface travels
The control surface travels must be set correctly to ensure that
the model has harmonious, well-balanced control response.
The travels are measured at the widest point of each control
surface.
Elevator
up (stick back) approx. + 13 mm
down (stick forward) approx. - 13 mm
Rudder
left and right approx. 20 mm
each side of centre
Ailerons
up approx. + 20 mm
down approx. - 8 mm
Spoilers - both ailerons up approx. + 20 mm
Elevator mix with spoiler approx. - 5 mm
Fig. 33
Both ailerons can be set to move up simultaneously in order to
provide a “spoiler” function, i.e. to shorten the landing approach.
At the same time a suitable amount of down-elevator trim must
be mixed in to keep the model in a stable attitude. This can only
be done if your radio control system features suitable mixers.
If you are not sure of this, read the instructions supplied with
your radio control system.
Note: when you apply a right aileron command, the right-hand
aileron (as seen from the tail, looking forward) must move up,
the left aileron down.
15
If you cannot set the stated travels by carrying out adjustments at
the transmitter, you will need to re-connect the pushrods to diffe-
rent holes in the servo output arms and / or control surface horns.
Gilding the lily - applying the decals
The kit is supplied with a multi-colour decal sheet. Cut out the
individual name placards and emblems and apply them to the
model in the position shown in the kit box illustration, or in another
arrangement which you find pleasing. The canopy 5 can be
coloured black down to the edges using a waterproof felt-tip pen
(e.g. Edding 3000).
Balancing
Like any other aircraft, the EasyGlider / EasyGlider Electric must
be balanced at a particular point in order to achieve stable flying
characteristics. Assemble your model completely, ready to fly.
You can usually obtain the correct CG position by adjusting the
position of the receiver battery or flight battery. If this is not
sufficient, add lead ballast to the nose or tail until the model
balances at the stated point.
The Centre of Gravity (CG) should be about 70 mm from the
leading edge at the wing root, measured either side of the
fuselage. Mark this point on both sides of the fuselage using a
waterproof felt-tip pen.
Support the model at this point on two fingertips, and it should
balance level. If not, you can move the flight battery or receiver
battery forward or aft to correct the balance point. Once the correct
position is found, mark the location of the battery inside the model
to ensure that it is always replaced in the same position.
Fig. 34
Preparing for the first flight
For the first flight wait for a day with as little breeze as possible.
The early evening is often a good time.
If this is your first model aircraft, your next step is to ask an
experienced model pilot to help you, as things usually do not go
well if you try to manage on your own. Your local model flying club
should be able to help you find someone, or - failing that - your
nearest model shop may be able to assist you. Our flight
simulator for the PC can also provide valuable experience prior
to your “first real steps” in model flying.
You can download the simulator at no charge from our website
www.multiplex-rc.de. You will also need the matching interface
cable for your MPX transmitter; this is available from model shops
under Order No. # 8 5153.
Be sure to carry out a range check before the first flight.
Just before the flight, charge up the transmitter battery and the
flight pack (or receiver battery) using the recommended
procedures. Ensure that “your” channel is not already in use
before you switch on the transmitter.
Ask your assistant to walk away from the model, holding the
transmitter. The aerial should be fitted but completely collapsed.
Your assistant should operate one of the functions constantly
while you watch the servos. The non-controlled servo should
stay motionless up to a range of about 60 m, and the controlled
one should follow the stick movements smoothly and without
any delay. Please note that this check can only give reliable results
if the radio band is clear of interference, and if no other radio
control transmitters are in use - even on different channels. If the
range check is successful, repeat it with the motor running
(EasyGlider Electric only). There should be no more than a very
slight reduction in effective radio range with the motor turning.
If you are not sure about anything, please don’t risk a flight. Send
the whole system (including battery, switch harness and servos)
to the Service Department of your RC system manufacturer and
ask them to check it.
The first flight ...
Glider:
A test-glide from shoulder level, directly into wind, will give you
an approximate idea of the model’s “trim”, i.e. whether it is set
up correctly, or whether the control surfaces or transmitter trims
need to be adjusted. If the model swings away to one side,
move the rudder trim slightly in the opposite direction. If the model
banks - one wing lower than the other - apply slight aileron trim
correction.
Hand-towing
This is the classic method of launching a glider to height. Attached
to a suitable length of towline (supplied in the kit), the model is
pulled up by your assistant running into wind; the glider will rise
up the line in a similar fashion to a kite. The towline first needs to
be prepared as follows: tie the towring 52 and the pennant 51 to
the “model” end of the line. The ring is engaged on the towhook
32, the towline unwound and your assistant (launcher) takes the
free end and walks upwind until the line is taut. The model should
be held under gentle tension before it is released. The launcher
watches the model (over his shoulder), adjusting his pace to
maintain a steady rate of climb. Take care not to overstress the
model during the launch; this is a particular danger in a fairly
strong wind.
Bungee launching
This is the easiest method of launching a glider of this size, as
no assistant is needed, and launch heights of around 100 m are
easily achieved. From this altitude quite long flying times can be
achieved, and they will be even longer if you manage to contact
a thermal, although this does depend on the prevailing weather.
A suitable rubber bungee launch system is available under
Order No. 72 3388.
Thermal flying
Making the best use of flat field thermals is not particularly easy,
and calls for considerable skill and experience. Areas of rising
air are harder to detect and recognise at a flat field, because they
tend to occur at higher altitude than at the hillside, where it is
often possible to find lift while the model is cruising along the
edge of the slope and then circle away in it. A thermal at a flat field
which occurs directly overhead is very hard to recognise, and to
exploit it to the full requires a highly skilled pilot. For this reason
it is always best to go thermal seeking off to one side of where
you are standing.
You will recognise thermal contact by the glider’s behaviour. Good
thermals are obvious because the model will climb strongly, but
weak thermals take a practised eye to detect, and you will need
a lot of skill to make use of them. With a little practice you will be
able to recognise likely trigger points for thermals in the local
landscape. The ground warms up in the sun’s heat, but heat
absorption varies according to the type of terrain and the angle
of the sun’s rays. The air over the warmer ground becomes
warmer in turn, and the mass of warm air flows along close to
the ground, driven by the breeze. Strong winds usually prevent
thermal build-up. Any obstruction - a shrub or tree, a fence, the
edge of a wood, a hill, a passing car, even your own model on
the landing approach - may cause this warm air to leave the
ground and rise. Imagine a drop of water on the ceiling,
wandering around aimlessly, and initially staying stuck to the
ceiling. If it strikes an obstruction it will fall on your head. A triggered
thermal can be thought of as the opposite of the drop of water.
The most obvious thermal triggers include sharply defined snow
fields on mountain slopes. The air above the snow field is cooled,
and flows downhill; at the edge of the snow field, part-way down
the valley, the cool air meets warm air flowing gently uphill, and
pushes it up and away as if cut off by a knife. The result is an
extremely powerful but bumpy thermal bubble. Your task is to
16
locate the rising warm air and centre your model in it. You will
need to control the glider constantly to keep it centred, as you
can expect the most rapid climb rate in the core of the thermal.
Once again, this technique does demand some skill.
To avoid losing sight of the machine be sure to leave the thermal
in good time. Remember that a glider is always easier to see
under a cloud than against a clear blue sky. If you have to lose
height in a hurry, do bear the following in mind:
The structural strength of the EasyGlider / EasyGlider Electric is
very great for this class of model, but it is not infinite. If you attempt
to destroy the model forcibly, please don’t expect any sympathy
or compensation from us.
Flying at the slope
Ridge soaring is an extremely attractive form of model flying.
Soaring for hours on end in slope lift, without needing any outside
aid for launching, must be one of the finest of modelling
experiences. But to “milk” a thermal to the limits of vision, bring
it down again in a continuous series of aerobatic manoeuvres,
and then repeat the whole show - that must surely be the last
word in model flying.
But take care - there are dangers for your model lurking at the
slope. Firstly, in most cases landing is much more difficult than
at a flat field site. It is usually necessary to land in the lee of the
hill where the air is turbulent; this calls for concentration and a
high-speed approach with last-minute airbrake extension. A
landing on the slope face, i.e. right in the slope lift, is even more
difficult. Here the trick is to approach slightly downwind, up the
slope, and flare at exactly the right moment, just before touch-
down.
Aero-towing
An ideal combination for learning to aero-tow, and for actual
aero-towing, is a Magister and an EasyGlider. If you wish to take-
off from grass, you will need a fairly powerful motor in the Magi-
ster, e.g. a brushless external rotor type (generally known as an
“outrunner”) with around 300 Watts of power.
For the tow you require a 20 m length of braided cable of 1 to 1.5
mm Ø. Cut a hole in a piece of hook-and-loop tape and tie it to
the end of the towline. Glue the matching piece of hook-and-
loop tape directly to the underside of the nose of the EasyGlider.
Form a loop in the other end of the towline (at the tug), and
connect it to the aero-tow coupling. Assemble the models and
set them up directly into wind, the glider behind the tug. Check
that the towline is resting on top of the Magister’s tailplane. The
tug now rolls forward until the towline is taut, and only then should
the tug’s pilot apply full-throttle. Both aeroplanes accelerate: the
tug stays on the ground initially, while the glider lifts off, but the
glider pilot keeps his model flying low above the ground, directly
in the wake of the tug; the tug can now lift off safely. The two
models should be kept climbing steadily, even through turns.
Avoid flying directly over your heads during the first few attempts
at aero-towing, as it is difficult to detect the models’ attitudes
from this angle. To drop the tow, bank the glider over into a tight
turn and apply full up-elevator; the hook-and-loop tape will now
let go, and the glider is “free”.
Electric flying
With the electric version - the EasyGlider Electric - you have the
optimum level of autonomy and independence. You can fly from
a flat field and carry out about four climbs to a sensible gliding
height from a single battery charge. At the slope you can also
keep the electric power system as a “lifebelt”, i.e. you only use
the motor to “keep afloat”, and avoid landing out, i.e. landing at
the bottom of the slope when the lift fails.
Flight performance
What is meant by a glider’s performance?
The two most important parameters are sinking speed and glide
angle. Sinking speed is a measure of the vertical height lost per
second relative to the surrounding air. The sinking speed is
primarily determined by the wing loading (weight relative to wing
area). Here the EasyGlider offers a really excellent performance
- much better than conventional models - as its wing loading is
so low (only around 17 g / dm²). This means that only slight
thermal assistance is necessary (warm air rising) to cause the
model to gain height. Wing loading is also the main factor in
determining the model’s airspeed - the lower the loading, the
slower the model. Low airspeed means that the model can be
turned extremely tightly, and this is also advantageous when
thermal flying, as areas of lift are usually very small when close
to the ground.
The glider’s low airspeed also benefits you considerably if you
are a beginner, as you have more time to think, and the model is
more likely to “excuse” a mistake at the controls.
However, there’s always a down-side:
The other important parameter in glider performance is the glide
angle. This is stated as a ratio, i.e. from a particular altitude the
model flies such and such a distance. The glide angle increases
as wing loading rises, and at the same time - of course - the
model’s airspeed increases. This becomes necessary if you
wish to fly in relatively strong winds, and when you need “energy
retention” for flying aerobatics.
For thermal flying you need a good glide angle too, as this is the
key to flying across areas of “sink” (the opposite of a thermal)
quickly, so that you can seek out another thermal. To increase
the glide angle you need to increase the wing loading, and this
is done by increasing the glider’s weight, i.e. by installing ballast
in the model. This should be positioned in the wing if possible.
In the EasyGlider there is an ideal location: it is the GRP tube
which forms the wing joiner. The internal diameter of this tube is
7.8 mm. Normally a ballast rod of this size would be difficult to
find, and expensive to purchase. However, by chance the diameter
of standard M8 studding (threaded rod) is just the right size. This
material has a diameter of 7.7 mm, and you will be able to buy
it at low cost in any DIY store. You may find that only half a full
length is sufficient. In this case you must ensure that the rod
cannot slide from side to side, e.g. by fitting lengths of balsa
dowel in both ends of the wing joiner, so that the weight is held
in the centre.
Safety
Safety is the First Commandment when flying any model aircraft.
Third party insurance should be considered a basic essential. If
you join a model club suitable cover will usually be available
through the organisation. It is your personal responsibility to
ensure that your insurance is adequate.
Make it your job to keep your models and your radio control
system in perfect order at all times. Check the correct charging
procedure for the batteries used in your RC set. Make use of all
sensible safety measures and precautions which are advised
for your system. An excellent source of practical accessories is
the MULTIPLEX main catalogue, as our products are designed
and manufactured exclusively by practising modellers for other
practising modellers.
Always fly with a responsible attitude. You may think that flying
low over other people’s heads is proof of your piloting skill; others
know better. The real expert does not need to prove himself in
such childish ways. Let other pilots know that this is what you
think too. Always fly in such a way that you do not endanger
yourself or others. Bear in mind that even the best RC system in
the world is subject to outside interference. No matter how many
years of accident-free flying you have under your belt, you have
no idea what will happen in the next minute.
17
The fascination of it all
Model flying is, and always has been, a fascinating hobby, and a
thoroughly enjoyable way of spending your leisure hours. Take
your time to get to know your new EasyGlider / EasyGlider Electric
really well. Plan to spend many hours in the open air, where you
will learn to appreciate the model’s excellent performance and
its docile handling. You can join us in enjoying one of the few
types of sport which combine high technology, manual dexterity,
and sophisticated personal skills. You can fly alone or with
friends, and at the same time you can enjoy the pleasures of
nature - treats which have become rare in today’s world.
We - the MULTIPLEX team - wish you many hours of pleasure in
building and flying your new model. Happy landings!
MULTIPLEX Modellsport GmbH & Co. KG
Model Development Dept.
18
Parts list
EasyGlider Kit # 21 4205
EasyGlider Electric Kit # 21 4207
Part No. Description Material Dimensions
No. off
1 1 1 Building instructions Paper A4
2 1 1 Decal sheet Printed adhesive film 350 x 1000 mm
3 1 - L.H. fuselage shell, Glider Moulded Elapor foam Ready made
4 1 - R.H. fuselage shell, Glider Moulded Elapor foam Ready made
5 - 1 L.H. fuselage shell, Electric Moulded Elapor foam Ready made
6 - 1 R.H. fuselage shell, Electric Moulded Elapor foam Ready made
7 1 1 Canopy Moulded Elapor foam Ready made
8 1 1 L.H. wing Moulded Elapor foam Ready made
9 1 1 R.H. wing Moulded Elapor foam Ready made
10 1 1 L.H. wing joiner cover Moulded Elapor foam Ready made
11 1 1 R.H. wing joiner cover Moulded Elapor foam Ready made
12 1 1 Tailplane Moulded Elapor foam Ready made
13 1 1 Fin, motor retainer Moulded Elapor foam Ready made
14 - 1 Motor, gearbox, propeller Metal / plastic Ready made
Small items set, EasyGlider + EasyGlider Electric
20 2 2 Hook-and-loop tape, hook Plastic 25 x 60 mm
21 2 2 Hook-and-loop tape, loop Plastic 25 x 60 mm
22 2 2 Canopy-Lock, latch catch Inj. moulded plastic Ready made
23 2 2 Canopy-Lock, latch tongue Inj. moulded plastic Ready made
24 4 4 Glue-fitting control surface horn Inj. moulded plastic Ready made
25 4 4 Pushrod connector Metal Ready made, 6 mm Ø
26 4 4 Washer Metal M2
27 4 4 Nut Metal M2
28 4 4 Socket-head grubscrew Metal M3 x 3 mm
29 1 1 Allen key Metal 1.5 mm A/F
30 2 2 Aileron pushrod, one Z-bend Metal 1 Ø x 70 mm
31 1 1 Hinge Inj. moulded plastic Ready made
32 1 - Tow-hook / Glider Inj. moulded plastic Ready made
33 - 1 Tail weight / Electric Steel Ball, 13 mm Ø
Wire and rod, EasyGlider + EasyGlider Electric
40 1 1 Wing joiner GRP tube 10 Ø x 8 Ø x 1000 mm
41 1 1 Elevator pushrod, one Z-bend Metal 0.8 Ø x 890 mm
42 1 1 Rudder pushrod, one Z-bend Metal 0.8 Ø x 850 mm
43 1 1 Elevator snake outer sleeve Plastic 3 / 2 Ø x 810 mm
44 1 1 Rudder snake outer sleeve Plastic 3 / 2 Ø x 785 mm
45 1 1 Elevator snake inner sleeve Plastic 2 / 1 Ø x 850 mm
46 1 1 Rudder snake inner sleeve Plastic 2 / 1 Ø x 810 mm
47 1 1 Snake outer sleeve, aerial Plastic 3 / 2 Ø x 810 mm
Tow-launch system, EasyGlider
50 1 - Towline and reel Nylon / Inj. moulded plastic 0.5 mm Ø x 75 m
51 1 - Pennant Plastic Ready made
52 1 - Towring Steel 14 mm Ø
Replacement parts (please order from your model shop)
Decal sheet 72 4274 Motor + gearbox + driver + spinner 33 2688
Fuselage shells, Glider + snakes 22 4157 Small items set, Glider 22 4153
Fuselage shells, Electric + snakes 22 4156 Small items set, Electric 22 4154
Canopy 22 4158 Wing joiner 72 3190
Wing panels 22 4159 Canopy-Lock 72 5136
Tail set 22 4160 Tow launch system 72 3387
Propeller blades 73 3188 Rubber bungee launch system 72 3388
GB
19
L.H. wing
panel
Elevator
GB
Spinner
Wing section
The wing features a cambered airfoil section over which the air
flows when the model is flying. In a given period of time the air
flowing over the top surface of the wing has to cover a greater
distance than the air flowing under it. This causes a reduction in
pressure on the top surface, which in turn creates a lifting force
which keeps the aircraft in the air. Fig. A
Centre of Gravity (CG)
To achieve stable flying characteristics your model aircraft must
balance at a particular point, just like any other aircraft. It is
absolutely essential to check and set the correct CG position
before flying the model for the first time.
The CG position is stated as a distance which is measured aft
from the wing root leading edge, i.e. close to the fuselage. Sup-
port the model at this point on two fingertips (or - better - use the
MPX CG gauge, # 69 3054); the model should now hang level.
Fig. B
If the model does not balance level, the installed components
(e.g. flight battery) can be re-positioned inside the fuselage. If
this is still not sufficient, attach the appropriate quantity of trim
ballast (lead or plasticene) to the fuselage nose or tail and secure
it carefully. If the model is tail-heavy, fix the ballast at the fuselage
nose; if the model is tail-heavy, attach the ballast at the tail end of
the fuselage.
The longitudinal dihedral is the difference in degrees between
the angle of incidence of the wing and of the tail. Provided that
you work carefully and attach the wing and tailplane to the
fuselage without gaps, the longitudinal dihedral will be correct
automatically.
If you are sure that both these settings (CG and longitudinal
dihedral) are correct, you can be confident that there will be no
major problems when you test-fly the model. Fig. C
Control surfaces, control surface travels
The model will only fly safely, reliably and accurately if the control
surfaces move freely and smoothly, follow the stick movements
in the correct “sense”, and move to the stated maximum travels.
The travels stated in these instructions have been established
during the test-flying programme, and we strongly recommend
that you keep to them initially. You can always adjust them to
meet your personal preferences later on.
Transmitter controls
The transmitter features two main sticks which the pilot moves
to control the servos in the model, which in turn operate the
control surfaces.
The functions are assigned according to Mode A, although other
stick modes are possible.
The transmitter controls the control surfaces as follows:
Rudder (left / right) Fig. D
Elevator (up / down) Fig. E
Aileron (left / right) Fig. F
Throttle (motor off / on) Fig. G
Unlike the other controls, the throttle stick must not return to the
neutral position automatically. Instead it features a ratchet so
that it stays wherever you put it. Please read the instructions
supplied with your radio control system for the method of setting
up and adjusting the transmitter and receiving system.
Basic information relating to model aircraft
Any aircraft, whether full-size or model, can be controlled around the three primary axes: vertical (yaw), lateral (pitch) and longitudinal
(roll).
When you operate the elevator, the model’s attitude alters around the lateral axis. If you apply a rudder command, the model swings
around the vertical axis. If you move the aileron stick, the model rolls around its longitudinal axis. External influences such as air
turbulence may cause the model to deviate from its intended flight path, and when this happens the pilot must control the model in
such a way that it returns to the required direction. The basic method of controlling the model’s height (altitude) is to vary motor
speed (motor and propeller). The rotational speed of the motor is usually altered by means of a speed controller. Applying up-
elevator also causes the model to gain height, but at the same time it loses speed, and this can only be continued until the model
reaches its minimum airspeed and stalls. The maximum climb angle varies according to the power available from the motor.
Fuselage
Canopy
Rudder
L.H.Aileron
Fin
Tailplane
R.H. wing
panel
Longitudinal axis
vertical axis
lateral axis
R.H. Aileron
23
F
GB
D
E
I
"Bilderbuch"
"Illustrations"
"Illustrations"
"Illustrazioni"
"Ilustraciónes"
© Copyright by MULTIPLEX 2005 Version 1.0
KIT EasyGlider # 21 4205
KIT EasyGlider Electric # 21 4207
24
Abb. 1
Abb. 2
12
15
3
5
6
4
11
10
9
7
13
40
8
23
23
22
22
32
31
30
28
25
26
27
4
47
45
46
43
44
41
42
14
14
13.1
33
25
Abb. 3
Abb. 5
Abb. 7
Abb. 9
Abb.6
Abb. 8
Abb. 10
3 / 5
41
45
43
43
45
41
3 / 5
43
3 / 5
4 / 6
46
44
42
!
!
42
46
44
4 / 6
4 / 6
44
32
47
13
13.1
4
Abb. 4
26
Abb. 11E
Abb.12
Abb. 15
Abb. 17
Abb. 14
Abb. 16
Abb. 18
Detail
14
6
47
13.1
4 / 6
3 / 5
4 / 6
3 / 5
31
22
13
13
25
24
27
26
28
Abb. 13
33
27
Abb. 19
Abb. 21
Abb. 20
12
13
25
24
27
26
28
12
8 / 9
27
28
25
26
24
8 / 9
8 / 9
Abb. 24
Abb. 22
Abb. 26
Abb. 25
Abb. 23
31
12
13
30
28
Abb. 27
Abb. 29
Abb. 30
Abb. 32
Abb. 34
8 / 9
10 / 11
40
9
8
23
23
7
7
70
Abb. 33
battery
RX
battery
switch RX
25mm
25mm
13mm
13mm
20mm
8mm
Abb. 28
Abb. 31
controller
14
29
Abb. 35 Abb. 36
51
50
52
21
20
8 - 10 mm / 0,3 - 0,4 in
350 mm
14 in
30
MULTIPLEX Modellsport GmbH & Co.KG • Neuer Weg 2 • D-75223 Niefern-Öschelbronn • www.multiplex-rc.de
A
B
C
D
E
Auftriebskraft X
α
G
F
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19

MULTIPLEX Easyglider Building Instructions

Categoria
Giocattoli telecomandati
Tipo
Building Instructions

in altre lingue